Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.557
Filtrar
1.
Nat Commun ; 15(1): 3518, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664477

RESUMO

Vegetation dieback and recovery may be dependent on the interplay between infrequent acute disturbances and underlying chronic stresses. Coastal wetlands are vulnerable to the chronic stress of sea-level rise, which may affect their susceptibility to acute disturbance events. Here, we show that a large-scale vegetation dieback in the Mississippi River Delta was precipitated by salt-water incursion during an extreme drought in the summer of 2012 and was most severe in areas exposed to greater flooding. Using 16 years of data (2007-2022) from a coastwide network of monitoring stations, we show that the impacts of the dieback lasted five years and that recovery was only partial in areas exposed to greater inundation. Dieback marshes experienced an increase in percent time flooded from 43% in 2007 to 75% in 2022 and a decline in vegetation cover and species richness over the same period. Thus, while drought-induced high salinities and soil saturation triggered a significant dieback event, the chronic increase in inundation is causing a longer-term decline in cover, more widespread losses, and reduced capacity to recover from acute stressors. Overall, our findings point to the importance of mitigating the underlying stresses to foster resilience to both acute and persistent causes of vegetation loss.


Assuntos
Secas , Rios , Elevação do Nível do Mar , Áreas Alagadas , Inundações , Mississippi , Plantas , Biodiversidade , Ecossistema , Salinidade
2.
Water Sci Technol ; 89(7): 1807-1815, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619904

RESUMO

In our contemporary world, demanding sustainable resource management, the study focuses on innovative fast flow channel designs. It investigates their efficacy in reducing flow kinetic energy, aiming to optimize water and energy management and diminish flood risks. Employing diverse methodologies, it analyzes and develops these designs, proving their substantial impact on stream energy management. These innovations not only enhance energy efficiency but also mitigate risks associated with excess kinetic energy, promoting safer stream management. This research significantly contributes to fluid dynamics and engineering, deepening the understanding of kinetic energy control in flows and offering potential solutions for water supply, environmental sustainability, and infrastructure safety challenges.


Assuntos
Ecossistema , Abastecimento de Água , Inundações , Rios
3.
J Emerg Manag ; 22(7): 87-99, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38573732

RESUMO

Manufactured housing communities (MHCs), commonly referred to as mobile home parks, provide an estimated 2.7 million American households with largely unsubsidized, affordable housing. Climate change threatens those who call these communities home by exacerbating known structural and social vulnerabilities associated with this housing type-including but not limited to increased risks to flooding, extreme temperatures, high winds, and wildfires. Climate change requires emergency managers to understand the diverse, integrated, and complex vulnerabilities of MHCs that affect their exposure to climate change risk. This article presents findings from an integrative literature review focused on the climate-related vulnerabilities of these communities described at three levels of scale: household, housing structure, and park community. It then draws on 15 years of engagement and action research with MHC residents and stakeholders in Vermont, including several federally declared flooding disasters, to distill key recommendations for emergency managers for assisting MHCs to prepare for and respond to emergencies. As climate change accelerates, emergency managers can increase efficacy by learning about the MHCs in their jurisdictions by leveraging the best available data to characterize risks, integrating MHCs into planning and mitigation activities, and engaging in conversations with stakeholders, including MHC residents and their trusted partners.


Assuntos
Mudança Climática , Desastres , Humanos , Habitação , Comunicação , Inundações
4.
J Emerg Manag ; 22(7): 71-85, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38573731

RESUMO

Flooding events are the most common natural hazard globally, resulting in vast destruction and loss of life. An effective flood emergency response is necessary to lessen the negative impacts of flood disasters. However, disaster management and response efforts face a complex scenario. Simultaneously, regular citizens attempt to navigate the various sources of information being distributed and determine their best course of action. One thing is evident across all disaster scenarios: having accurate information and clear communication between citizens and rescue personnel is critical. This research aims to identify the diverse needs of two groups, rescue operators and citizens, during flood disaster events by investigating the sources and types of information they rely on and information that would improve their responses in the future. This information can improve the design and implementation of existing and future spatial decision support systems (SDSSs) during flooding events. This research identifies information characteristics crucial for rescue operators and everyday citizens' response and possible evacuation to flooding events by qualitatively coding survey responses from rescue responders and the public. The results show that including local input in SDSS development is crucial for improving higher-resolution flood risk quantification models. Doing so democratizes data collection and analysis, creates transparency and trust between people and governments, and leads to transformative solutions for the broader scientific community.


Assuntos
Planejamento em Desastres , Desastres , Humanos , Inundações , Comunicação , Coleta de Dados
5.
J Hazard Mater ; 470: 134283, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38613956

RESUMO

The coexistence of microplastics (MPs) and heavy metals in sediments has caused a potential threat to sediment biota. However, differences in the effects of MPs and heavy metals on microbes and plants in sediments under different sediment conditions remain unclear. Hence, we investigated the influence of polyethylene (PE) and polylactic acid (PLA) MPs on microbial community structure, Pb bioavailability, and wheatgrass traits under sequential incubation of sediments (i.e., flood, drainage, and planting stages). Results showed that the sediment enzyme activities presented a dose-dependent effect of MPs. Besides, 10 % PLA MPs significantly increased the F1 fractions in three stages by 11.13 %, 30.10 %, and 17.26 %, respectively, thus resulting in higher Pb mobility and biotoxicity. MPs altered sediment bacterial composition and structures, and bacterial community differences were evident in different incubation stages. Moreover, the co-exposure of PLA MPs and Pb significantly decreased the shoot length and total biomass of wheatgrass and correspondingly activated the antioxidant enzyme activity. Further correlation analysis demonstrated that community structure induced by MPs was mainly driven by sediment enzyme activity. This study contributes to elucidating the combined effects of MPs and heavy metals on sediment ecosystems under different sediment conditions.


Assuntos
Sedimentos Geológicos , Chumbo , Microplásticos , Poluentes Químicos da Água , Sedimentos Geológicos/microbiologia , Chumbo/toxicidade , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Microbiota/efeitos dos fármacos , Poliésteres , Polietileno/toxicidade , Inundações , Bactérias/efeitos dos fármacos
6.
Biomed Res Int ; 2024: 1113634, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590384

RESUMO

Introduction: According to the Global Climate Risk Index, Pakistan is ranked as the fifth-most vulnerable country to climate change. Most recently, during June-August 2022, heavy torrential rains coupled with riverine, urban, and flash flooding led to an unprecedented disaster in Pakistan. Around thirty-three million people were affected by the floods. More than 2 million houses were damaged, leaving approximately 8 million displaced and approximately 600,000 people in relief camps. Among those, 8.2 million women and 16 million children are the worst affected, with many requiring urgent medical and reproductive healthcare. To plan an efficient healthcare program and a climate-resilient health system, it is crucial to understand the issues that the affected people face during floods. Methodology. This rapid assessment included the population in the most severely affected districts across the four provinces of Pakistan. A mixed methods approach using qualitative and quantitative techniques was utilized. A total of 52 qualitative, in-depth interviews were conducted with community-level healthcare providers, national and provincial government departments, and development partners involved in relief activities. Using a structured questionnaire, the quantitative cross-sectional survey was conducted with a final sample of 422 women, married and unmarried (15-49 years old), residing in the relief camps in the flood-affected areas. The outcome variable of the survey was the access to sexual and reproductive health services faced by the women in the flood-affected districts. Data collection took place four months postfloods during Nov-Dec 2022, while the data analysis was conducted between Dec 2022 and Jan 2023. The quantitative data was analyzed using SPSS (Statistical Package for the Social Sciences) version 20, and qualitative data was analyzed using NVivo 12. Ethical consent was sought from all the participants. Ethical approval was also sought from the ethics committee of the Health Services Academy, Government of Pakistan. Results: The findings indicated that, overall, all the provinces were unprepared for a calamity of such a large magnitude. Access to services and health data reporting from the flood-affected areas was challenging mainly due to a shortage of trained health workforce because of the displacement of a large volume of the health workforce. Overall, equipment, medicines, supplies, and food were scarce. Women residing in the camps were markedly affected, and 84% (375) were not satisfied with the flood relief services provided to them. The floods impacted their monthly income as 30% (132) of respondents started depending on charity postfloods. Almost 77% (344) reported limited access to sexual and reproductive health services and had yet to receive sanitary, hygiene, and delivery kits, while 69% (107 out of 154) of girls stopped schooling postfloods. Almost 77% (112) of the married women reported having a child less than one year of age. Yet, only 30% (44 out of 144 currently married women) were using any form of family planning method-damage to the health facilities affected access to overall maternal care services. Conclusion: The findings concluded that there was no planning for sexual and reproductive health services in the flood-affected areas. Several barriers were identified. The government and development partners needed to prepare to cater to women's needs during the floods. The findings highlight the need for collaborative efforts between the government, civil society, and development partners to address the challenges faced in disaster management and strengthen disaster management capacity.


Assuntos
Desastres , Serviços de Saúde Reprodutiva , Criança , Humanos , Feminino , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Inundações , Estudos Transversais , Paquistão , Inquéritos e Questionários , Saúde Reprodutiva
7.
J Environ Manage ; 357: 120762, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574708

RESUMO

Urban pluvial flooding is becoming a global concern, exacerbated by urbanization and climate change, especially in rapidly developing areas where existing sewer systems lag behind growth. In order to minimize a system's functional failures during extreme rainfalls, localized engineering solutions are required for urban areas chronically suffering from pluvial floods. This study critically evaluates the Deep Tunnel Sewer System (DTSS) as a robust grey infrastructure solution for enhancing urban flood resilience, with a case study in the Gangnam region of Seoul, South Korea. To do so, we integrated a one-dimensional sewer model with a rapid flood spreading model to identify optimal routes and conduit diameters for the DTSS, focusing on four flood-related metrics: the total flood volume, the flood duration, the peak flooding rate, and the number of flooded nodes. Results indicate that, had the DTSS been in place, it could have reduced historical flood volumes over the last decade by 50.1-99.3%, depending on the DTSS route. Regarding the conduit diameter, an 8 m diameter was found to be optimal for minimizing all flood-related metrics. Our research also developed the Intensity-Duration-Frequency (IDF) surfaces in three dimensions, providing a correlation between simulated flood-related metrics and design rainfall characteristics to distinguish the effect of DTSS on flood risk reduction. Our findings demonstrate how highly engineered solutions can enhance urban flood resilience, but they may still face challenges during extreme heavy rainfalls with a 80-year frequency or above. This study contributes to rational decision-making and emergency management in the face of increasing urban pluvial flood risks.


Assuntos
Inundações , Resiliência Psicológica , Modelos Teóricos , Urbanização , República da Coreia , Cidades
8.
J Environ Manage ; 357: 120787, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579470

RESUMO

The assessment of risk posed by climate change in coastal cities encompasses multiple climate-related hazards. Sea-level rise, coastal flooding and coastal erosion are important hazards, but they are not the only ones. The varying availability and quality of data across cities hinders the ability to conduct holistic and standardized multi-hazard assessments. Indeed, there are far fewer studies on multiple hazards than on single hazards. Also, the comparability of existing methodologies becomes challenging, making it difficult to establish a cohesive understanding of the overall vulnerability and resilience of coastal cities. The use of indicators allows for a standardized and systematic evaluation of baseline hazards across different cities. The methodology developed in this work establishes a framework to assess a wide variety of climate-related hazards across diverse coastal cities, including sea-level rise, coastal flooding, coastal erosion, heavy rainfall, land flooding, droughts, extreme temperatures, heatwaves, cold spells, strong winds and landslides. Indicators are produced and results are compared and mapped for ten European coastal cities. The indicators are meticulously designed to be applicable across different geographical contexts in Europe. In this manner, the proposed approach allows interventions to be prioritized based on the severity and urgency of the specific risks faced by each city.


Assuntos
Mudança Climática , Inundações , Cidades , Europa (Continente)
9.
J Environ Manage ; 357: 120850, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38583384

RESUMO

Climate change and urbanization contribute to the increased frequency of short-duration intense rainstorms. Traditional solutions often involve multiple scenarios for cost-effectiveness comparison, neglecting the rationality of placement conditions. The effective coupling and coordination of the location, number, size, and cost of storage tanks are crucial to addressing this issue. A three-phase approach is proposed to enhance the dynamic link between drainage pipeline and storage tanks in urban high-density built-up areas, integrating Python language, SWMM, the Elitist Non-Dominated Sorting Genetic Algorithm (NSGA-III), and the Analytic Hierarchy Process (AHP) methods. In the first stage, each node within the pipeline network is considered as a potential storage tank location. In the second stage, factors such as the length and diameter of the upstream connecting pipeline, as well as the suitability of the storage tank location, are assessed. In the third stage, the length and diameter of the downstream connecting pipeline node are evaluated. The results show that the 90 overflow nodes (overflow time >0.5h) have been cleared using the three-phase approach with a 50a (duration = 3h) return period as the rainfall scenario, which meets the flooding limitations. After the completion of the three-phase method configuration, the total overflow and SS loads were reduced by 96.45% and 49.30%, respectively, compared to the status quo conditions. These two indicators have decreased by 48.16 and 9.05%, respectively, compared to the first phase (the traditional method of only replacing all overflow nodes with storage tanks). The proposed framework enables decision-makers to evaluate the acceptability and reliability of the optimal management plan, taking into account their preferences and uncertainties.


Assuntos
Inundações , Chuva , Reprodutibilidade dos Testes , Simulação por Computador , Urbanização
10.
Disaster Med Public Health Prep ; 18: e55, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38577778

RESUMO

The remnants from Hurricane Ida in September 2021 caused unprecedented rainfall and inland flooding in New York City (NYC) and resulted in many immediate deaths. We reviewed death records (electronic death certificates and medical examiner reports) to systematically document the circumstances of death and demographics of decedents to inform injury prevention and climate adaptation actions for future extreme precipitation events. There were 14 Ida-related injury deaths in NYC, of which 13 (93%) were directly caused by Ida, and 1 (7%) was indirectly related. Most decedents were Asian (71%) and foreign-born (71%). The most common circumstance of death was drowning in unregulated basement apartments (71%). Themes that emerged from the death records review included the suddenness of flooding, inadequate exits, nighttime risks, and multiple household members were sometimes affected. These deaths reflect interacting housing and climate crises, and their disproportionate impact on disadvantaged populations needing safe and affordable housing. Climate adaptation actions, such as improving stormwater management infrastructure, informing residents about flood risk, implementing Federal Emergency Management Agency recommendations to make basements safer, and expanding emergency notification measures can mitigate risk. As climate change increases extreme precipitation events, multi-layered efforts are needed to keep residents safe.


Assuntos
Tempestades Ciclônicas , Humanos , Cidade de Nova Iorque/epidemiologia , Inundações , Mudança Climática , Previsões
11.
BMC Geriatr ; 24(1): 320, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580910

RESUMO

BACKGROUND: Apart from both China and the Philippines continuing to be exposed to and affected by different climate-induced hazards, in particular floods and typhoons, they are also reported to be witnessing rapid ageing populations of 60 years and older. As such, this systematic review synthesized the existing evidence about the impacts aggravated by floods and typhoons on the geriatric disabling health of older Chinese and Filipinos, respectively. METHODS: Four (4) electronic databases were systematically searched to identify eligible studies published between 2000 and early 2023. This process had to confirm the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (PRISMA), as well as the standard protocol registered with PROSPERO (CRD42023420549). RESULTS: Out of 317 and 216 initial records retrieved for China and the Philippines, respectively, 27 (China) and 25 (Philippines) studies were eligible for final review. The disabling conditions they reported to affect the health of older adults were grouped into 4 categories: cognitive and intellectual, physical, chronic and terminal illnesses, and mental and psychological, with the latter identified as the most prevalent condition to affect older Chinese and Filipinos. On a sub-category level, posttraumatic stress disorder (PTSD) was the most common condition reported in 27 flood-related studies in China, while injuries and wounds prevailed in the Philippines, according to 25 typhoon-related studies. CONCLUSION: The increasing occurrence of extreme climate hazards, especially floods and typhoons in China and the Philippines, respectively, impacted the health of their older adults with various disabling effects or conditions. Therefore, this calls for appropriate geriatric-informed interventions in the context of climate change and rapidly ageing settings beyond China and the Philippines to others that are also prone to floods and typhoons.


Assuntos
Tempestades Ciclônicas , Inundações , Nível de Saúde , Idoso , Humanos , Envelhecimento , Povo Asiático , China/epidemiologia , Filipinas , Avaliação Geriátrica
12.
Nature ; 627(8002): 108-115, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448695

RESUMO

The sea level along the US coastlines is projected to rise by 0.25-0.3 m by 2050, increasing the probability of more destructive flooding and inundation in major cities1-3. However, these impacts may be exacerbated by coastal subsidence-the sinking of coastal land areas4-a factor that is often underrepresented in coastal-management policies and long-term urban planning2,5. In this study, we combine high-resolution vertical land motion (that is, raising or lowering of land) and elevation datasets with projections of sea-level rise to quantify the potential inundated areas in 32 major US coastal cities. Here we show that, even when considering the current coastal-defence structures, further land area of between 1,006 and 1,389 km2 is threatened by relative sea-level rise by 2050, posing a threat to a population of 55,000-273,000 people and 31,000-171,000 properties. Our analysis shows that not accounting for spatially variable land subsidence within the cities may lead to inaccurate projections of expected exposure. These potential consequences show the scale of the adaptation challenge, which is not appreciated in most US coastal cities.


Assuntos
Altitude , Cidades , Planejamento de Cidades , Inundações , Movimento (Física) , Elevação do Nível do Mar , Cidades/estatística & dados numéricos , Planejamento de Cidades/métodos , Planejamento de Cidades/tendências , Inundações/prevenção & controle , Inundações/estatística & dados numéricos , Estados Unidos , Conjuntos de Dados como Assunto , Elevação do Nível do Mar/estatística & dados numéricos , Aclimatação
13.
Nat Commun ; 15(1): 2209, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38467636

RESUMO

Despite increasing risks from sea-level rise (SLR) and storms, US coastal communities continue to attract relatively high-income residents, and coastal property values continue to rise. To understand this seeming paradox and explore policy responses, we develop the Coastal Home Ownership Model (C-HOM) and analyze the long-term evolution of coastal real estate markets. C-HOM incorporates changing physical attributes of the coast, economic values of these attributes, and dynamic risks associated with storms and flooding. Resident owners, renters, and non-resident investors jointly determine coastal property values and the policy choices that influence the physical evolution of the coast. In the coupled system, we find that subsidies for coastal management, such as beach nourishment, tax advantages for high-income property owners, and stable or increasing property values outside the coastal zone all dampen the effects of SLR on coastal property values. The effects, however, are temporary and only delay precipitous declines as total inundation approaches. By removing subsidies, prices would more accurately reflect risks from SLR but also trigger more coastal gentrification, as relatively high-income owners enter the market and self-finance nourishment. Our results suggest a policy tradeoff between slowing demographic transitions in coastal communities and allowing property markets to adjust smoothly to risks from climate change.


Assuntos
Inundações , Elevação do Nível do Mar , Mudança Climática , Políticas
14.
Prehosp Disaster Med ; 39(2): 123-130, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522957

RESUMO

BACKGROUND: Floods are the most frequent natural disasters with a significant share of their mortality. Preparedness is capable of decreasing the mortality of floods by at least 50%. This paper aims to present the psychometric properties of a scale developed to evaluate the behavior of preparedness to floods in Sudan and similar settings. METHODS: In this methodological scale development study, experts assessed the content validity of the items of the developed scale. Data were collected from key persons of 413 households living in neighborhoods affected by the 2018 floods in Kassala City in Sudan. A pre-tested questionnaire of sociodemographic data and the Flood Preparedness Behavior Scale (FPBS) were distributed to the participants' houses and recollected. Construct validity of the scale was checked using exploratory factor analysis (EFA) and confirmatory factor analysis (CFA). Internal consistency of the scale was checked using Cronbach's alpha. Test-retest reliability was assessed by Pearson's correlation coefficient. Item analyses and tests of significance of the difference in the mean scores of the highest and lowest score groups were carried out to ensure discriminatory power of the scale items. RESULTS: Experts agreed on the scale items. Construct validity of the scale was achieved using EFA by removing 34 items and retaining 25 items that were structured in three factors, named as: measures to be done before, during, and after a flood. Confirmatory factor analysis confirmed the construct obtained by EFA. The loadings of the items on their factors in both EFA and CFA were all > 0.3 with significant associations and acceptable fit indices obtained from CFA. The three factors were found to be reliable in terms of internal consistency (Cronbach's alpha coefficients for all factors were > 0.7) and test-retest reliability coefficient. In item analysis, the corrected total item correlations for all the items were > 0.3, and significant differences in the means of the highest and lowest score groups indicated good item discrimination power. CONCLUSION: The developed 25 items scale is an instrument which produces valid and reliable measures of preparedness behavior for floods in Sudan and similar settings.


Assuntos
Planejamento em Desastres , Inundações , Psicometria , Humanos , Reprodutibilidade dos Testes , Sudão , Feminino , Masculino , Inquéritos e Questionários/normas , Adulto , Análise Fatorial , Pessoa de Meia-Idade
15.
Funct Plant Biol ; 512024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38538565

RESUMO

In recent years, research on flooding stress and hypoxic responses in plants has gathered increasing attention due to climate change and the important role of O2 in metabolism and signalling. This Collection of Functional Plant Biology on 'Flooding stress and responses to hypoxia in plants' presents key contributions aimed at progressing our current understanding on how plants respond to low-O2 conditions, flooding stress and a combination of stresses commonly found in flooded areas. The Collection emphasises the characterisation of diverse plant responses across different developmental stages, from seed germination to fully developed plants, and under different water stress conditions ranging from waterlogging to complete submergence, or simply low-O2 conditions resulting from limited O2 diffusivity in bulky tissues. Additionally, this Collection highlights diverse approaches, including eco-physiological characterisation of plant responses, detailed descriptions of root anatomical characteristics and their surrounding microenvironments, evaluation of the seed microbiota under flooding stress, the modification of gene expression, and evaluations of diverse germplasm collections.


Assuntos
Inundações , Plantas , Hipóxia , Sementes
16.
Environ Monit Assess ; 196(4): 386, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506980

RESUMO

Heavy rains and floods cause human, material, and economic damage in cities worldwide. The severity of flooding has intensified due to accelerating urbanization. While much of the existing research on flood hazards emphasizes simulation and assessment, the correlation between indicators has yet to be explored. This study employs the Tree Gaussian Process sensitivity analysis method. Through rigorous sampling and correlation analysis, the model identifies critical determinants. Significantly, factors such as the water supply penetration rate (Var3), water pipeline density in built-up areas (Var4), centralized treatment rate of sewage treatment plants (Var6), agricultural land for forestry (Var13), and urban, village, and industrial and mining land (Var15) stand out as primary influencers on the flood-affected populace. These variables reflect a city's flood management capability and its dedication to resource stewardship and ecological equilibrium, underscoring its critical role in flood risk assessment and strategic mitigation. The study further illuminates that the interplay of these variables can exacerbate flood consequences, suggesting a compounded impact when variables operate in tandem. Recognizing these synergistic effects reveals a more pronounced flood threat than previously estimated, indicating that viewing these factors in silos might underrepresent the risk involved.


Assuntos
Desastres , Inundações , Humanos , Cidades , Monitoramento Ambiental , Urbanização
17.
Environ Monit Assess ; 196(4): 400, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536479

RESUMO

This study explores a possible link between solar activity and floods caused by precipitation. For this purpose, discrete blocks of data for 89 separate flood events in Europe in the period 2009-2018 were used. Solar activity parameters with a time lag of 0-11 days were used as input data of the model, while precipitation data in the 12 days preceding the flood were used as output data. The level of randomness of the input and output time series was determined by correlation analysis, while the potential causal relationship was established by applying machine learning classification predictive modeling. A total of 25 distinct machine-learning algorithms and four model ensembles were applied. It was shown that in 81% of cases, the designed model could explain the occurrence or absence of precipitation-induced floods 9 days in advance. Differential proton flux in the 0.068-0.115 MeV and integral proton flux > 2.5 MeV were found to be the most important factors for forecasting precipitation-induced floods. The study confirmed that machine learning is a valuable technique for establishing nonlinear relationships between solar activity parameters and the onset of floods induced by precipitation.


Assuntos
Inundações , Prótons , Monitoramento Ambiental , Algoritmos , Aprendizado de Máquina
18.
Environ Monit Assess ; 196(4): 338, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430346

RESUMO

Assessing and mapping flood risks are fundamental tools that significantly contribute to the enhancement of flood management strategies. Identifying areas that are susceptible to floods and devising strategies to reduce the risk of waterlogging is of utmost importance. In the present study, an integrated approach, combining advanced remote sensing technologies, Geographic Information Systems (GIS), and analytic hierarchy process (AHP), was adopted in the Patan district of Gujarat, India, with a coastline spanning over 1600 km, to evaluate the numerous variables that contribute to the risk of flooding and waterlogging. After evaluating the flood conditioning factors and their respective weights using the analytic hierarchy process (AHP), the results were processed in GIS to accurately delineate areas that are prone to flooding. The results highlighted exceptional precision in identifying vulnerable areas, allowing for a thorough evaluation of the impact severity. The integrated approach yields valuable insights for multi-criteria assessments. The findings indicate that a significant portion of the district's land, precisely 8.94%, was susceptible to very high- risk of flooding, while 27.76% were classified as high-risk areas. Notably, 35.17% of the region was identified as having a moderate level of risk. Additionally, 20.96% and 7.15% were categorized as low-risk and very low-risk areas, respectively. Overall, the study highlights the need for proactive measures to mitigate the impact of floods on vulnerable communities. The research findings were verified by conducting ground truth and visual assessments using microwave satellite imagery (Sentinel-1). The aim of this validation was to test the accuracy of the study in identifying waterlogged agricultural areas and their extent based on AHP analysis. The ground verification and analysis of satellite images confirmed that the model accurately identified approximately 74% of the area categorized under high and very high flood vulnerability to be waterlogged and flooded. This research can provide valuable assistance to policymakers and authorities responsible for flood management by gathering necessary information about floods, including their intensity and the regions that are most susceptible to their impact. Additionally, it is crucial to implement corrective measures to improve soil drainage in vulnerable areas during heavy rainfall events. Prioritizing the adoption of sustainable agricultural practices and improving land use are also crucial for environmental conservation.


Assuntos
Inundações , Sistemas de Informação Geográfica , Processo de Hierarquia Analítica , Monitoramento Ambiental/métodos , Tecnologia de Sensoriamento Remoto
20.
Ying Yong Sheng Tai Xue Bao ; 35(2): 533-542, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38523112

RESUMO

Under the background of frequent flood disasters and stock planning challenges, clarifying the relationship and mechanism of urban green space landscape patterns and flood retention efficiency at multiple spatial scales has become a critical scientific issue in realizing the maximum flood retention efficiency of limited urban green spaces and improving the capabilities of urban flood control. We reviewed and summarized the factors, mechanisms, and scale differences in the influence of green space landscape patterns on flood retention efficacy at the urban and block scales. Based on the causes for differences in conclusions and research deficiencies, we suggested that future studies should focus on watershed-scale research and expand the investigation into three-dimensional green space landscape patterns. Additionally, attention should be paid to urban and suburban areas separately, and a set of research indices with indicative significance for the flooding process should be established for different flood-sensitive areas and block structures. These measures will help quantitatively reveal how green space landscape patterns of urban and block scales affect flooding process, providing theoretical guidance for urban planning and establishing urban flood safety patterns.


Assuntos
Inundações , Cidades , Planejamento de Cidades , Desastres , Parques Recreativos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...